FACULTY OF ENGINEERING

Department of Civil Engineering

CIVE 412 | Course Introduction and Application Information

Course Name
Advanced Steel Design
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
CIVE 412
Fall/Spring
3
0
3
6

Prerequisites
  CIVE 304 To succeed (To get a grade of at least DD)
Course Language
English
Course Type
Service Course
Course Level
First Cycle
Mode of Delivery -
Teaching Methods and Techniques of the Course -
Course Coordinator -
Course Lecturer(s) -
Assistant(s) -
Course Objectives To perform structural design of steel elements under combined loading, composite beams, plate girders, and connections
Learning Outcomes The students who succeeded in this course;
  • • Gain the knowledge to design steel elements under combined loading.
  • • Acquire the knowledge to design composite beams
  • • Design plate girders.
  • • Grasp the possible failure modes of connections.
Course Description Review of basic steel design, second order analysis and members under combined axial load and bending, composite beams, plate girders, connections.

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Management Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Related Preparation
1 Introduction and review of basic steel design Chapter-1: 1.1-1.7; 2.1-2.2; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
2 Second order analysis Chapter-11: 11.1-11.4; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
3 Members under combined axial load and bending Chapter-11: 11.2-11.5; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
4 Members under combined axial load and bending Chapter-11: 11.5-11.6; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
5 Members under combined axial load and bending Chapter-11: 11.6-11.7; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
6 Composite beams Chapter-16: 16.1-16.4; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
7 Review Chapter-1: 1.1-1.7; 2.1-2.2; 11.1-11.7;“Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
8 Composite beams Chapter-16: 16.4-16.7; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
9 Composite beams Chapter-16: 16.7-16.11; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
10 Plate girders Chapter-18: 18.1-18.4; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
11 Plate girders Chapter-18: 18.4-18.9; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
12 Connections Chapter-3: 3.1-3.7; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
13 Connections Chapter-12: 12.1-12.14; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
14 Connections Chapter-14: 14.1-14.17; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
15 Review Chapter-1: 1.1-1.7; 2.1-2.2; 11.1-11.7; 16-1-16.11; 18.1-18.9; 3.1-3.7; 12.1-12.14; 14.1-14.17; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
16 Final Chapter-1: 1.1-1.7; 2.1-2.2; “Structural Steel Design LRFD Method,” J. C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011

 

Course Notes/Textbooks “Structural Steel Design, Jack C. McCormac, Stephen F. Csernak, 5th Ed., Prentice Hall, 2011
Suggested Readings/Materials Turkish Steel Code; AISC Steel Manual, 2015

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
7
30
Presentation / Jury
Project
1
20
Seminar / Workshop
Oral Exams
Midterm
1
20
Final Exam
1
30
Total

Weighting of Semester Activities on the Final Grade
70
Weighting of End-of-Semester Activities on the Final Grade
30
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Theoretical Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: '.16.' x total hours)
16
0
Study Hours Out of Class
16
2
32
Field Work
0
Quizzes / Studio Critiques
0
Portfolio
0
Homework / Assignments
7
4
28
Presentation / Jury
0
Project
1
30
30
Seminar / Workshop
0
Oral Exam
0
Midterms
1
20
20
Final Exam
1
22
22
    Total
180

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

To have adequate knowledge in Mathematics, Science and Civil Engineering; to be able to use theoretical and applied information in these areas on complex engineering problems.

2

To be able to identify, define, formulate, and solve complex Civil Engineering problems; to be able to select and apply proper analysis and modeling methods for this purpose.

X
3

To be able to design a complex system, process, device or product under realistic constraints and conditions, in such a way as to meet the requirements; to be able to apply modern design methods for this purpose.

X
4

To be able to devise, select, and use modern techniques and tools needed for analysis and solution of complex problems in engineering applications.

5

To be able to design and conduct experiments, gather data, analyze and interpret results for investigating complex engineering problems or Civil Engineering research topics.

6

To be able to work efficiently in Civil Engineering disciplinary and multi-disciplinary teams; to be able to work individually.

7

To be able to communicate effectively in Turkish, both orally and in writing; to be able to author and comprehend written reports, to be able to prepare design and implementation reports, to present effectively, to be able to give and receive clear and comprehensible instructions.

8

To have knowledge about global and social impact of engineering practices on health, environment, and safety; to have knowledge about contemporary issues as they pertain to engineering; to be aware of the legal ramifications of engineering solutions.

9

To be aware of ethical behavior, professional and ethical responsibility; to have knowledge about standards utilized in engineering applications.

10

To have knowledge about industrial practices such as project management, risk management, and change management; to have awareness of entrepreneurship and innovation; to have knowledge about sustainable development.

11

To be able to collect data in the area of Civil Engineering, and to be able to communicate with colleagues in a foreign language;

X
12

To be able to speak a second foreign language at a medium level of fluency efficiently.

13

To recognize the need for lifelong learning; to be able to access information, to be able to stay current with developments in science and technology; to be able to relate the knowledge accumulated throughout the human history to Civil Engineering.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 


NEWS |ALL NEWS

Izmir University of Economics
is an establishment of
izto logo
Izmir Chamber of Commerce Health and Education Foundation.
ieu logo

Sakarya Street No:156
35330 Balçova - İzmir / Turkey

kampus izmir

Follow Us

İEU © All rights reserved.